
Compactlike discrete breathers in systems with nonlinear and nonlocal dispersive terms

A. V. Gorbach and S. Flach
Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzerstr. 38, Dresden 01187, Germany

�Received 28 February 2005; revised manuscript received 25 July 2005; published 8 November 2005�

Discrete breathers with purely anharmonic short-range interaction potentials localize superexponentially
becoming compactlike. We analyze their spatial localization properties and their dynamical stability. Several
branches of solutions are identified. One of them connects to the well-known Page and Sievers-Takeno lattice
modes, another one connects with the compacton solutions of Rosenau. The absence of linear dispersion allows
for extremely long-lived time-quasiperiodic localized excitations. Adding long-range anharmonic interactions
leads to an extreme case of competition between length scales defining the spatial breather localization. We
show that short- and long-range interaction terms competition results in the appearance of several characteristic
crossover lengths and essentially breaks the concept of compactness of the corresponding discrete breathers.
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I. INTRODUCTION

Energy localization due to a nonlinearity in dynamical
systems has been observed for more than one century �1�,
and the effect of an exact balance between nonlinearity and
linear dispersion of wave packets leading to the appearance
of soliton excitations has become a paradigmatic example in
nonlinear science which can be found in various textbooks.
In the past decade remarkable achievements in the study of
localized nonlinear excitations were made with the discovery
of stable localized modes in spatially discrete translationally
invariant Hamiltonian systems—discrete breathers �DBs�
�2�. They have been proved to be generic exact time-periodic
solutions of the corresponding coupled nonlinear ordinary
differential equations, eventhough the latter are generally
nonintegrable. It is worth mentioning that discrete breathers
have been observed experimentally in various physical sys-
tems including coupled optical waveguide arrays �3–5�,
coupled Josephson junctions �6�, micromechanical cantilever
systems �7–9�, antiferromagnetic crystals �10,11�, high-Tc
superconductors �12�. Discrete breathers are predicted also to
exist in the dynamics of dusty plasma crystals �13�.

Among the most important characteristics of a localized
excitation are its localization length and the spatial decay
characteristics of its amplitude. Although DBs can be local-
ized practically on a single site, in most of the cases they
have exponentially decaying tails �similar to their continuum
counterparts—solitons�. This is true if the interaction poten-
tials are reasonably short ranged �see Ref. �14� for details�.
However, when an anharmonic interaction between adjacent
sites is much stronger then the harmonic one, localized ex-
citations can become even more compact. As it was demon-
strated by Rosenau and Hyman �15,16�, in continuous sys-
tems nonlinear localized excitations may compactify, i.e.,
gain strictly zero tails, under nonlinear dispersion. The same
was conjectured for discrete systems �17�, however, later it
was shown that in discrete systems localized excitations can-
not have an exact compact structure �18�, but the tail decay
follows a superexponentional law e−a exp bn, provided that the
interaction is purely short range. This fact was then con-
firmed numerically �19�, and the corresponding breather so-
lutions were coined compactlike �19� or almost-compact �20�
DBs.

If compactlike breathers are dynamically stable, we may
expect that localized perturbations of such solutions will lead
to a quasiperiodic in time evolution, which will not induce a
radiation of energy away from the breather. This is in con-
trast to the well-known existence of such a radiation for sys-
tems with linear dispersion �21�. There it appears due to the
resonant overlap of combination frequencies of the internal
perturbed breather dynamics with the spectrum of small am-
plitude plane waves. In the case of purely nonlinear disper-
sion the width of this spectrum is zero, and thus the origin of
the radiation is removed. One expects then that perturbed
compactlike breathers will not radiate energy away, giving
rise to genuine quasiperiodic compactlike breathers.

Another important issue which might drastically change
the rate of spatial decay in DB tails is the presence of long-
range interactions, essential, e.g., in systems with weakly
screened Coulomb interaction such as ionic crystals, or vari-
ous biomolecules. Usually decaying slower than exponen-
tially in space, long-range interactions introduce a crossover
length as a result of competition of the two essentially dif-
ferent length scales �14�. They can also lead to the appear-
ance of energy thresholds for DBs in some cases, where a
pure short-range interaction would not be capable of produc-
ing any. In Ref. �22� it was demonstrated that the effect of
length-scale competition with long-range algebraically and
exponentially decaying interaction can lead to a different
type of multistability of DBs, when in a certain model pa-
rameter regime several different types of DBs coexist having
the same value of the spectral parameter �i.e., velocity or
frequency�.

It is the purpose of this paper to address the above-listed
issues. The paper is organized as follows. In Sec. II we in-
troduce the model. We demonstrate, that the specifically cho-
sen nonlinear potentials allow one to completely separate
temporal and spatial dependencies and thus significantly sim-
plify the analysis of the problem. We derive the nonlinear
coupled algebraic equations for the spatial profile of a solu-
tion and in addition an ordinary differential equation �Duff-
ing equation� for the master function describing uniform os-
cillations of all the sites with time. In Sec. III we obtain the
different types of discrete breather solutions. We demonstrate
that in general the model supports two classes of discrete
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breathers with completely different dynamical properties. We
then study the linear stability properties of basic types of
DBs and observe quasiperiodic localized excitations. In Sec.
IV we reveal the effect of long-range interactions along the
chain on properties of DB solutions. We show that the pres-
ence of nonlocal dispersive terms result in the appearance of
several characteristic crossover lengths. We derive estima-
tions for these crossover lengths, as well as asymptotes for
amplitude distribution in DB tails, on the basis of a simple
three-site model. In Sec. V we conclude.

II. MODEL

We consider a simple one-dimensional model of �nonlin-
early� coupled oscillators with the following Hamiltonian:

H = �
n

hn

� �
n
� u̇n

2

2
+ V�un� + �

l�0

K

4ls ��un+l − un�4 + �un−l − un�4�� ,

�1�

where un�t� is the displacement of nth unit mass oscillator
from its equilibrium position, the constant s�0 characterizes
the rate of spatial decay of long-range interactions between
oscillators, and V�un� is given by

V�un� =
un

2

2
−

un
4

4
. �2�

The equation of motion for the displacement of the nth os-
cillator from its equilibrium reads

ün = K�
l

1

ls 	�un+l − un�3 + �un−l − un�3
 − un + un
3. �3�

We note that while the interaction decays algebraically for
any finite power s, in the limit s→� we recover the case of
short-range nearest neighbor interaction.

The specifically chosen nonlinear potentials allow one to
use the time-space separation technique �17,18�, so that time-
periodic solutions of Eq. �3� can be written in the form

un�t� = �nG�t� , �4�

with time-independent amplitudes �n and a master function
G�t� describing uniform oscillations of all the sites. After
substitution of the ansatz �4� into the Eqs. �3� the following
equation for the function G�t� is obtained:

G̈ + G = − CG3, �5�

while the amplitudes �n satisfy algebraic equations:

C�n = − K�
l�0

1

ls ���n+l − �n�3 + ��n−l − �n�3� − �n
3, �6�

where C is an arbitrary separation constant. Its absolute
value can be always chosen to be equal to unity �27�.

While the dynamics of all the sites is governed by a
unique function G�t�, which can be easily found by integrat-

ing Eq. �5�, the spatial profile of possible solutions of Eqs.
�3� is determined by Eqs. �6� being of main interest for us.

III. BASIC TYPES OF COMPACTLIKE DISCRETE
BREATHERS

It is important to note that the dynamics of a DB, as well
as its spatial profile, depend on the sign of C in Eqs. �5� and
�6�. This sign is fixed only for the case of uncoupled oscil-
lators �K=0� and for small values of K�C�0�, while gener-
ally it can be arbitrary. As a consequence, for large enough
values of K Eqs. �3� support two classes of DBs with differ-
ent dynamical properties, since the sign of C defines the type
of nonlinearity �“soft” or “hard”� in Eq. �5� for the master
function G�t�. DB solutions of different classes possess es-
sentially different core structures. As a consequence, the im-
pact of long-range interactions on DB tail structure is also
different for these two classes of DBs.

A. Core structure of DBs

In order to understand how two different classes of solu-
tions of Eqs. �3� appear, it is instructive to start with a simple
case of three coupled oscillators. This simple model gives a
rather good approximation for the sites of a DB core, which
are practically not affected by the presence of long-range
interactions. Here we restrict ourselves in considering only
symmetric DBs centered at site n=0 �it is straightforward to
modify this approximate model for more complicated types
of multisite DBs�. Therefore by putting �−1=�1 and
�1=��0, we finally obtain from Eqs. �6� the following ex-
pression for the central site amplitude:

�0
2 = − C

1 + 2�

1 + 2�3�1 − K�
, �7�

while the coefficient � is a root of the fourth-order polyno-
mial equation

2K�4 − �4K + 1��3 + 3K�2 + �K + 1�� − K = 0. �8�

For each given real value of � obtained from Eq. �8� the sign
of C is fixed and determined by the condition of non-
negative valued right-hand side of Eq. �7�.

In Fig. 1 the real roots of Eq. �8� are plotted in the range
of the coupling constant K� �0,10�. There exist two real
nontrivial roots, whose absolute values stay below unity �and
thus corresponding to single-site DBs with amplitudes of the
central site �0 greater than those of the neighboring sites
�±1� in the whole interval of non-negative values of K up to
K→ +�. One of these roots originates from �=0 in the un-
coupled limit �i.e., from a single-site excitation� and remains
to be positive in the whole interval of K, see dashed line in
Fig. 1. The corresponding family of DBs have a nonstag-
gered pattern of amplitudes �n—in-phase oscillations, see
Fig. 2�a�. The value of �0

2 /C computed for this root from Eq.
�7� is negative for K�2 �see dashed line in the inset in Fig.
1�, therefore one should choose C=−1 for this type of DBs in
Eqs. �5� and �6�. Thus DB solutions of Eq. �3� with a non-
staggered pattern should possess soft nonlinear properties,
i.e., their amplitude decays with growing frequency, as it
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follows from the Eq. �5� with negative C. Here we mention
that the quantity �0

2 /C computed for the three-site model
changes its sign above the value K=2. However, the com-
parison with numerically obtained solutions of Eq. �6� for a
larger system size �N=201� indicates essential discrepancies
when K�1 �see triangles in the inset in Fig. 1�. It comes
from the fact that a DB core of breathers with the nonstag-
gered profile extends while increasing K, approaching con-
tinuum compacton solutions �20� as K→ +�. Indeed, as
shown in Fig. 2�a�, while a DB core involves more and more
sites with increasing K, its characteristic width in terms of
the continuum coordinate x=n /K0.25 remains to be fixed and
demonstrates rather good agreement with the value
L0�2.92 reported for DBs in the continuum limit �20�.

Another nontrivial real-valued root of Eq. �8� originates
from �=−1 in the uncoupled limit �i.e., from a staggered
homogeneous excitation� and remains to be negative in the
whole interval of K, see solid black line in Fig. 1. The cor-
responding DB family is characterized by a staggered profile
in the core �while the tails have more complicated profile, as
will be shown below�, i.e., the central �n=0� and the neigh-
boring �n= ±1� sites oscillate in antiphase. It is remarkable,
that the corresponding value of �0

2 /C changes its sign at
K=Kcr�0.1, see solid black lines in the inset in Fig. 1.
Therefore for small enough values of the coupling constant
K�Kcr both staggered and nonstaggered types of DB solu-
tions of Eq. �3� possess soft nonlinear properties, in accor-
dance to the chosen type of the on-site nonlinear potential
�2�. The profile of the corresponding staggered-core DB so-
lution at K=0.07 is shown in Fig. 2�b�. Notably, all the tail
sites perform inphase oscillations in this type of DBs, similar
to the case of nonstaggered DBs described above. However,
the central site oscillates in antiphase with all the rest of the
lattice.

The competition between on- and intersite nonlinearities
results in the change of dynamical behavior of the DBs with
staggered core profile as the coupling becomes strong
enough: The nonlinear term in Eq. �5� for the master function

G�t� becomes of the hard type for staggered DBs when
K�Kcr. As the result, the amplitude of such a DB solution
increases with growing frequency. The corresponding profile
is shown in Fig. 2�c�. In this type of staggered DBs all sites
in the core perform antiphase oscillations. In the case of pure
short-range interactions in the system, the staggered pattern
persists for the whole spatial profile, including the breather
tails. However, long-range interactions destroy the uniform
staggered pattern, introducing a complicated domainlike
structure in the breather tails, as will be explained below.

Unlike DBs with nonstaggered profile, the staggered core
DBs stay localized on a few sites as K increases, therefore
the three-site model gives a rather good approximation for
larger size systems for arbitrarily large values of K �see
squares in the inset in Fig. 1�. Simultaneously, the amplitude
of these DBs decreases as K→ +� �for a fixed value of the
frequency�. However, we note that there is no limit in fre-
quency �and therefore in energy� for this type of DB, since
the master function G�t� satisfies the Duffing equation �5�
with the hard nonlinear term �C=1�. Note also that as
K→ +�, the influence of the intersite nonlinear interactions
becomes more important than the effect of on-site nonlineari-
ties for the oscillating in antiphase sites of the DB core.
Therefore at large values of K the staggered-core DB asymp-
totically approaches the high-energy limit of discrete
breather solutions in models with purely intersite nonlineari-
ties �Fermi-Pasta-Ulam lattices� �23�.

Thus for K�Kcr Eqs. �3� support two different classes of
DB solutions with soft and hard nonlinear properties, in what
follows we will refer to such breather solutions as S-type and
H-type DBs, respectively. The above discussed single-site
DBs represent only particular �basic� members of these two
classes of solutions. In general, one can constract more com-
plicated localized S- and H-type solutions—multisite DBs.
As an example, we mention here two-site DBs with two sites
in the core oscillating with the same �maximum� amplitude,
see gray lines and symbols in Fig. 2. The center of energy
density distribution is located in-between two sites in these
DBs, so that they can be viewed as translated half site single-
site DBs.

Finally, we would like to remark, that the existence of the
two different classes of DB solutions of Eqs. �3� is the result
of a competition between soft nonlinearity of the on-site po-
tential and hard nonlinear intersite interactions. Upon change
the type of nonlinearity in the on-site potential �by changing
the sign of the quartic term in Eq. �2��, only the H-type DBs
with staggered core profile survive.

B. Linear stability

Different dynamical properties of DBs with staggered and
nonstaggered core profiles result, in particular, in different
stability properties of these excitations. In this section we
perform linear stability analysis of basic types of H- and
S-type DBs by studying the dynamical behavior of a small
perturbation �n�t� to a given DB solution ûn�t�. In order to
construct a certain type of DB solution of Eq. �3�, we solve
numerically Eqs. �6� for the DB profile �̂n�t� with a certain
sign of the separation constant C �chosen in accordance to

FIG. 1. Real roots of Eq. �8�. The inset shows the corresponding
values of �0

2 /C computed from Eq. �7�, squares, triangles and
circles indicate the same quantity computed for the system of 201
coupled oscillators.
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the above performed analysis of DBs structure� and multiply

it by a periodic solution Ĝ�t� of the Duffing equation �5�,
according to the ansatz �4�. Because of the time-space sepa-
ration �4�, the stability properties remain qualitatively the
same for the whole family of a given DB type with different
frequencies 	B=2
 /TB �i.e., with different time-periodic
functions G�t+TB�=G�t��. However, they might drastically
change by varying the relative strength of the on-site and
intersite nonlinearities controlled by the coupling constant K.

Thus once a given DB solution ûn�t� is obtained numeri-
cally, we add a small perturbation to it un�t�= ûn�t�+�n�t� and
linearize equations of motion Eqs. �3� with respect to �n�t�:

�̈n = 3K�
l

1

ls 	�ûn+l − ûn�2��n+l − �n� + �ûn−l − ûn�2��n−l − �n�


− �n + 3ûn
2�n. �9�

In order to simplify the stability analysis, here we restrict
ourselves in considering pure short-range interaction terms,
thus we keep only the term with l=1 in the right-hand side of
Eqs. �9�, which corresponds to the limit s→�. Being essen-
tial for DB tail characteristics, long-range interactions prac-
tically do not affect the core structure of a DB, provided that
their decay rate s is sufficiently large �s�3�. Therefore the
impact of long-range interactions on stability properties of
DBs is expected to be negligible.

The discrete breather acts as a parametic driver for small
perturbations �n�t� with the period T=TB /2 being the half
period of the DB solution �i.e., the half period of a given
solution G�t� in Eq. �5��.

Equations �9� define a map

��̇��T�
���T�


 = F��̇��0�
���0�


 �10�

which maps the phase space of perturbations onto itself by
integrating each point over the period T. Here we used the
abbreviation x� ��x1 ,x2 ,… ,xl ,…�. The map �10� is charac-
terized by a symplectic Floquet matrix F, whose complex
eigenvalues � and eigenvectors y� provide information about
the stability of the DB �2�. Here we note that if all eigenval-
ues � are by modulus 1, then the DB is linearly �marginally�
stable. Otherwise perturbations exist which will grow in time
�typically exponentially� and correspond to a linearly un-
stable DB. Upon changing a control parameter �e.g., the cou-
pling constant K� stable DBs can become unstable �and vice
versa�. Such a change of stability is appearing because two
�or more� Floquet eigenvalues collide on the unit circle and
depart from it �2�.

In Fig. 3�a� the typical Floquet spectrum is shown for a
S-type single-site DB. All the eigenvalues � can be divided
into three subcategories: One pair of eigenvalues is always
situated at exp�i
� �denoted by squares in the inset in Fig.
3�a��; it corresponds to perturbations along the DB periodic
orbit �phase mode� and along the corresponding family of
DB solutions �2�. The period of these perturbations coincides
with the DB period. In addition, there are quasidegenerated
�28� bands of eigenvalues at �=exp�±iTB /2� �filled circles in

FIG. 2. Profiles of various types of single-site �black color� and
two-site �gray color� DB solutions of Eq. �6�: �a� nonstaggered DBs
corresponding to the branch marked with triangles in the inset in
Fig. 1 �S-type DBs�, parameter values are C=−1, K=1 �circles,
squares�, and K=100 �triangles�; �b� a staggered-core DB corre-
sponding to the branch marked with circles in the inset in Fig. 1,
parameter values are: C=−1, K=0.07 �K�Kcr�; �c� staggered-core
DBs corresponding to the branch marked with squares in the inset
in Fig. 1 �H-type DBs�, parameter values are C=1, K=1
�K�Kcr�. The long-range decay rate is s=100, lines are provided to
guide the eye.
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the inset in Fig. 3�a��, which correspond to perturbations in
breather tails. Such perturbations have characteristic fre-
quency �l=1 defined by the choice of the linear constant in
the on-site potential �2�, they would correspond to linear
phonons if linear coupling between sites were introduced.
Finally, there is a finite number of eigenvalue pairs bifurcat-
ing from the quasidegenerated bands, which correspond to
perturbations of the DB core sites �crosses in the inset in Fig.
3�a��. The number of such isolated pairs is proportional to
the characteristic DB core size, it grows as the coupling con-
stant K increases, see Fig. 3�a�. While increasing the cou-
pling constant K, these isolated pairs move on the unit circle
and new pairs bifurcate from the quasidegenerated band, but
they do not collide with each other and the nonstaggered
type of DB remains linearly stable up to the continuum limit
K→ +�.

Notably, the Floquet spectrum of the S-type two-site DB
is qualitatively the same as the one of the single-site DB for

any K. The only principal difference is that it has two degen-
erated pairs of eigenvalues at �=exp�i
�, since in the un-
coupled limit K=0 the corresponding solution has two sites
excited with equal amplitude. Usually such degeneracy of
eigenvalues is lifted for any nonzero K, and one pair of ei-
genvalues is “pushed out” from �=exp�i
� either along the
real axis or along the unit circle. However, in the case of
purely nonlinear interactions between sites the symmetric
two-site DB “cuts” the effective linear chain �9� into two
noninteracting halves. Therefore the additional degeneracy
of eigenvalues corresponding to symmetric and antisymmet-
ric perturbations with respect to the DB center remains for
any K.

In contrast to the S-type DBs, the H-type single-site and
two-site DBs are linearly stable only within certain windows
of the coupling constant K values, see Fig. 3�b�. Close to the
critical value of the coupling constant K=Kcr, below which
the H-type DBs do not exist, both single- and two-site
H-type DBs experience strong instabilities connected with
tangent bifurcations of these solutions with other ones, hav-
ing more complicated spatial structure. In addition, there is
another instability of a finite strength, appearing in certain
windows of the parameter K, see inset in Fig. 3�b�. In gen-
eral, apart from several small intervals in K, for any given
value of K only one of these two DB configurations is stable.
The corresponding unstable perturbation—the “depinning”
mode—“tilts” the single-site �two-site� DB towards the half
site shifted stable two-site �single-site� one. Changing the
coupling constant, the stable configuration varies from the
two-site to single-site DB and back �at K�0.15 and
K�0.3, see Fig. 3�b��, so that the exchange of stability pro-
cess �25� is observed. This exchange of stability process can
be connected to an exchange of the dominant roles between
intersite and on-site nonlinearities. Indeed, typically for mod-
els with purely intersite nonlinearities �Fermi-Pasta-Ulam
lattices� the basic stable configuration is the two-site DB
�2,23�. In contrast, for models with weak coupling between
sites and a nonlinear onsite potential in the form �2� �Klein-
Gordon lattices� the single-site DB configuration is stable
�2�.

Of principal interest is an influence of the unstable depin-
ning mode on the dynamical behavior of staggered-core
DBs. A small perturbation along this mode is generally
known to result in depinning of the unstable DB from its
initial position. Depending on the relative Hamiltonian en-
ergy �1� of the perturbation �
H /HDB� and on the strength of
instability of the depinning mode, the resulting behavior
might vary from quasiperiodiclike oscillations between two
neighboring unstable positions �in a well of the correspond-
ing “Peierls-Nabarro potential”� to quasiregular or even cha-
oticlike motion along the chain �see, e.g., Refs. �25,26��.
Generally, the depinned DB resonates with linear phonons
through its excited internal modes and starts to radiate en-
ergy. Therefore eventually it will be trapped again at some
stable position or even disappear completely transferring to-
tally its energy to excited delocalized phonons.

However, in the case of purely nonlinear dispersion there
are no linear phonons in the system, and all possible linear
resonances are suppressed. As a result, one can observe al-
most perfect quasiperiodic oscillations of perturbed unstable

FIG. 3. Evolution of the arguments of Floquet eigenvalues �
with change of the coupling constant K for different types of single-
site DBs: �a� S-type DB with the frequency 	B=0.9. Inset shows
the Floquet spectrum at K=1, the unit circle in the complex plane is
indicated to guide the eye; �b� H-type DB with the frequency
	B=1.1. Inset shows evolution of absolute values ���2 with change
of K. A pair of eigenvalues corresponding to the unstable depinning
mode �see the main body text for the details� of the two-site DB is
indicated with gray color.
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DBs between two neighboring stable positions, see Fig. 4�a�.
Similar quasiperiodic behavior is observed in dynamics of a
stable DB with perturbation along one of its internal modes,

see Figs. 4�b� and 4�c�. In the latter case no detectable radia-
tion �within the used double precision� of energy from the
DB core was observed during dynamical simulation over 105

breather periods. In this respect, a one-dimensional Hamil-
tonian lattice with purely anharmonic interactions between
sites �1� might be an interesting “toy model” to study more
complicated exact DB solutions like quasiperiodic and mov-
ing discrete breathers.

IV. LONG-RANGE INTERACTIONS EFFECT

Let us now fix the value of K=1 and study the influence
of long-range interactions on the spatial profile of a DB. In
Fig. 5 the profiles of the H-type single-site DBs are shown
for various values of the decay constant s. They were ob-
tained by solving Eqs. �6� numerically with use of the stan-
dard Newton scheme �24� for the chain of N=201 oscillators
�−100�n�100� with periodic boundary conditions �29�.
Similarly to the case of nonlinear short-range interaction, the
computed DBs have a compactlike structure with mainly
three central sites oscillating �see Fig. 2�. The other oscilla-
tors are almost at rest and can be considered as breather tails.
The presence of long-range interactions breaks the uniform
superexponential law of the spatial tail decay known for the
case of pure short-range nonlinear interactions �18,19�, intro-
ducing several crossover lengths.

For a few central sites, lying within the breather core, the
forces due to the long-range interactions are negligible as
compared to those due to the nearest-neighbor interactions.
Thus the central part of a breather is practically not affected
by the presence of long-range interactions. However, at some
distance L1 from the DB center interactions with the nearest
neighbors �having small enough amplitudes� become of the
same order as the long-range interactions with the DB core
�central three sites having the highest amplitudes�. This dis-
tance is the first crossover length, where the long-range in-
teractions come into play. It can be roughly estimated by an
assumption, that at the distance L1 interactions with the

FIG. 4. Dynamics of a perturbed DB: �a� Position of the DB
center xc, calculated through the energy dencity hn �1�:
xc=�n�n ·hn� /�nhn. At time t=0 the single-site H-type DB
�	B=1.1,K=0.3� was perturbed along the unstable depinning mode
with the relative energy of perturbation 
H /HDB�10−4; �b� energy
density hn �1� evolution in dynamics of the stable single-site H-type
DB �	B=1.1, K=0.2� with a symmetric perturbation along one of
the DB internal modes. The relative energy of perturbation

H /HDB�10−2; �c� the Fourier transform of u12�t� �the DB is cen-
tered at n=11� for the same dynamical simulation as in �b�. Vertical
dashed lines indicates the first and the third DB harmonics
	B=1.1 and 3	B=3.3.

FIG. 5. Single-site H-type DB solutions of Eq. �6� with C=1
and K=1 for various exponents of the long-range interaction:
s=10 �squares�, s=20 �stars�, s=50 �crosses�, and s=100
�triangles�.
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breather core sites are exactly compensated by interactions
with the nearest neighbors. Thus keeping only the leading
order terms in the sum in the right-hand side of Eq. �6� one
obtains

−
�1

3

�L1 − 1�s = �L1−1
3 . �11�

Since for �n��L1 the relations between the amplitudes �n are
practically the same as in the case of pure nearest-neighbor
interactions, i.e., they follow the superexponential law
�n��−1�n��1�exp�ln�3��n−1�� , 1� �n��L1, one can obtain from
Eq. �11�

��1�exp�3 ln 3�L1−2��−3�L1 − 1�s = 1. �12�

In the limit of extremely large values of s the distance L1 will
be also large, and satisfy

L1 �
ln s

ln 3
+ 2. �13�

Thus the first crossover length L1 grows approximately
logarithmically with s. The numerical results in Fig. 5
yield L1�s=10��3, L1�s=20��4, L1�s=50��5, and
L1�s=100��6. They compare very well with the corre-
sponding solutions of Eq. �12�: 2.71, 3.46, 4.44, 5.17. There-
fore even extremely fast �but still algebraically� decaying in
space long-range interactions essentially destroy the concept
of compactlike breathers, since only amplitudes of a few
sites in the tails obey the superexponential law of decay,
while the rest of the tail amplitudes decay much slower in
space �following a power law, as will be shown below�.

At large distances from the breather center n�1 �due to
the single-site DB symmetry around n=0 we consider here
only non-negative values of n� the impact of short- and long-
range interactions is exchanged: now the most powerful con-
tribution comes from the interaction with the breather core,
while nearest neighbors, due to their small amplitudes, prac-
tically do not affect the dynamics of a tail site. Thus for large
n one can derive from Eq. �6� the following asymptote:

�n � −
K

C
��0

3

ns +
�1

3

�n − 1�s +
�1

3

�n + 1�s� , �14�

which in fact gives a rather good approximation for all tail
sites starting from the first crossover point n=L1 �see solid
lines in Fig. 6�. Note that only amplitudes of the two DB
core sites and the sign of separation constant C are needed to
obtain this asymptote for tail amplitude distribution. In this
respect we found the simple three-site model, discussed in
Sec. III, to be very fruitful: it gives full information not only
about the DB core sites, but about tail characteristics as well.

Note that the specific structure of a staggered DB core
with a central site n=0 and two neighboring sites n= ±1
having amplitudes �n of opposite signs stipulates several
other crossover lengths connected to changes of the sign of
the right-hand side in Eq. �14� which manifest as singulari-
ties in the logarithmic plots in Fig. 6. The most pronounced
crossover at n=L2 is associated with the change from a

single power law n−s to a more complex one �14�, see Fig. 6.
Indeed, in the case n�1, �s /n��1 the expression �14� can
be re-written as

�n � −
K�0

3

Cns �1 + 2�3 + �3 s2

n2 + o� s2

n2
� , �15�

�C=1, ��0 for a staggered core DB and C=−1, ��0 for a
nonstaggered DB�. Thus, in leading order, at large enough
distance from the DB center n�L2 the tail amplitudes follow
the same power law n−s as the decay of long-range interac-
tions. Since L2 is defined by the vanishing of the bracket on
the right-hand side of Eq. �15� we obtain in leading order

L2 � s� − �3

1 + 2�3 . �16�

The corresponding values of L2 for s=10, 20, 50, 100,
and �=−0.382 with Eq. �16� are 5.6, 11.2, 28, 56.
They compare reasonably well with the numerically
observed ones L2�s=10��7, L2�s=20��13, L2�s=50��31,
and L2�s=100��64. In between the two characteristic length

FIG. 6. Single-site H-type DB solutions of Eq. �6� with C=1 for
various exponents of the long-range interaction: �a� s=100; �b�
s=20. Circles: numerical results. Solid lines: tail asymptotes �14�.
Dashed lines: location of L1. The inset in �b� indicates the change of
amplitudes sign around the crossover point L2.
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scales L1�n�L2 the tail amplitudes decay following a more
complicated power law �14�.

V. CONCLUSIONS

To conclude, we revealed the influence of long-range non-
linear interactions on the spatial profile and properties of
compactlike discrete breathers in a model of coupled oscil-
lators with pure nonlinear dispersion. As we demonstrate, it
is the intriguing property of the model under consideration,
that it supports two classes of discrete breathers—with stag-
gered and nonstaggered spatial profiles of a DB core—
having different dynamical properties. The dynamics of a
nonstaggered DB is essentially governed by the soft nonlin-
ear on-site potential, while DBs with the staggered core have
the opposite, hard, type of nonlinear dynamical behavior
caused mainly by the presence of nonlinear interactions in
the chain. Apart from different dynamical properties, the in-
fluence of long-range interactions on spatial profiles of these
two types of DBs is also different. With the algebraic spatial
decay long-range interactions introduce a different length
scale which becomes essential at large enough distances
from a DB core. We show that the effect of long- and short-
range terms competition results in the appearance of a char-
acteristic crossover length L1 in both types of DBs, at which
the spatial tail decay drastically changes from the superex-
ponential law to the algebraic one. For large powers s of the
long-range interactions spatial decay the crossover length L1
scales logarithmically with s. The tail asymptote �14� dem-
onstrates complex power law spatial decay, which follows
essentially the same algebraic decay as the long-range inter-

actions in the system at large enough distances from the DB
core. While for nonstaggered DBs the influence of long-
range interactions manifests through the only characteristic
crossover length L1, the spatial profile of DBs with the stag-
gered core possess several other crossover lengths associated
with sign changes of the asymptote �14�. Thus the spatial
pattern of oscillations in a DB with the staggered core be-
comes rather complicated in the presence of long-range in-
teractions: its core sites perform antiphase oscillations, while
its tails are splitted in several domains of in-phase oscilla-
tions.

Finally, we would like to mention that the discussed case
of purely nonlinear coupled oscillators represents a simple
model to reveal properties of nonlinear excitations in a sys-
tem without linear phonons. As we demonstrated in this pa-
per, “switching off” the phonons leads not only to the change
in characteristic rate of spatial localization of energy, but to
appearance of several other intriguing dynamical properties
of nonlinear localized excitations. Especially it eliminates
the possible source of linear resonances which otherwise
would destroy quasiperiodic breathers and possibly also
moving breathers. The discussed models thus allows us to
obtain a better understanding of the general problem of ex-
istence or nonexistence of quasiperiodic and moving discrete
breather solutions.
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